
Journal of Neuroendocrinology. 2020;00:e12844.	 wileyonlinelibrary.com/journal/jne	 	 | 	1 of 8
https://doi.org/10.1111/jne.12844

© 2020 British Society for Neuroendocrinology

 

Received:	9	March	2020  |  Accepted:	11	March	2020
DOI: 10.1111/jne.12844  

R E V I E W  A R T I C L E

Regulatory peptides and systems biology: A new era of 
translational and reverse-translational neuroendocrinology

Lee E. Eiden1  |   Andrew L. Gundlach2  |   Valery Grinevich3  |   Mary R. Lee4 |   
André S. Mecawi5  |   Duan Chen6 |   Ruud M. Buijs7  |   Vito S. Hernandez8  |   
Germán Fajardo-Dolci8,9  |   Limei Zhang8

1Section	on	Molecular	Neuroscience,	National	Institute	of	Mental	Heath-Intramural	Research	Program,	NIH,	Bethesda,	MD,	USA
2The	Florey	Institute	of	Neuroscience	and	Mental	Health,	The	University	of	Melbourne,	Parkville,	VIC,	Australia
3Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University Heidelberg, Mannheim, Germany
4Section	on	Clinical	Psychoneuroendocrinology	and	Neuropsychopharmacology,	NIAAA	and	NIDA,	NIH,	Bethesda,	MD,	USA
5Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
6Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
7Department	of	Cell	Biology	and	Physiology,	Institute	for	Biomedical	Research,	Universidad	Nacional	Autonoma	de	Mexico,	Mexico	City,	Mexico
8Department	of	Physiology,	School	of	Medicine,	National	Autonomous	University	of	Mexico,	Mexico	City,	Mexico
9School	of	Medicine,	National	Autonomous	University	of	Mexico,	Mexico	City,	Mexico

The peer review history for this article is available at https://publo ns.com/publo n/10.1111/jne.12844 

Correspondence
Lee E. Eiden, Section on Molecular 
Neuroscience, National Institute of Mental 
Health, Intramural Research Program, NIH, 
9000	Rockville	Pike,	Bethesda,	MD,	USA,	
20892.
Email: eidenl@nih.gov

Limei Zhang, Department of Physiology, 
School	of	Medicine,	National	Autonomous	
University	of	Mexico,	Av.	Universidad	3000,	
Mexico	City,	04510,	Mexico.
Email:	limei@unam.mx

Funding information
Consejo Nacional de Ciencia y Tecnología; 
National Institute of Mental Health; 
Universidad	Nacional	Autónoma	de	México

Abstract
Recently, there has been a resurgence in regulatory peptide science as a result of 
three converging trends. The first is the increasing population of the drug pipeline 
with peptide-based therapeutics, mainly in, but not restricted to, incretin-like mol-
ecules for treatment of metabolic disorders such as diabetes. The second is the de-
velopment of genetic and optogenetic tools enabling new insights into how peptides 
actually function within brain and peripheral circuits to accomplish homeostatic and 
allostatic	regulation.	The	third	is	the	explosion	in	defined	structures	of	the	G-protein	
coupled	receptors	to	which	most	regulatory	peptides	bind	and	exert	their	actions.	
These trends have closely wedded basic systems biology to drug discovery and de-
velopment, creating a “two-way street” on which translational advances travel from 
basic research to the clinic, and, equally importantly, “reverse-translational” informa-
tion is gathered, about the molecular, cellular and circuit-level mechanisms of ac-
tion of regulatory peptides, comprising information required for the fine-tuning of 
drug development through testing in animal models. This review focuses on a small 
group	of	 ‘influential’	 peptides,	 including	oxytocin,	 vasopressin,	 pituitary	 adenylate	
cyclase-activating	 polypeptide,	 ghrelin,	 relaxin-3	 and	 glucagon-like	 peptide-1,	 and	
how basic discoveries and their application to therapeutics have intertwined over 
the past decade.
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1  | INTRODUC TION: THE SIGNIFIC ANCE 
OF ‘REGUL ATORY ’

Regulatory peptides are first messengers, released from neu-
rones or endocrine cells, that interact with receptors on the same 
or immediately adjacent cells (as paracrine or autocrine factors), 
on synaptically-linked cells (as neurotransmitters or neuroeffec-
tors) or on distant cells (as hormones). Regulatory peptides, along 
with non-peptide hormones, steroids and metabolic intermedi-
ates, including glucose and various lipids and metabolites, con-
trol the dynamics of communication between cells, contained in 
different organs, which defines systems physiology. The ‘regu-
latory’ aspect of regulatory peptides, however, is not contained 
just in their bioactivity upon release from their sites of synthesis. 
Rather, their availability to act in a regulatory manner at distant 
sites is first and foremost determined by the rates at which they 
are	synthesised	and	secreted.	Classic	examples	include:	(i)	pulsa-
tile release of luteinising hormone-releasing hormone leading to 
the ovulatory surge; (ii) up-regulation of vasopressin synthesis 
and subsequent release upon changes in hydromineral status; 
(iii)	 the	 exquisitely	 fine-tuned	 secretion	 of	 insulin	 in	 response	
to glucose and a cohort of incretins, neurotransmitters and me-
tabolites that converge on the beta cell of the pancreas through 
innervation and the general circulation; and (iv) the release (as 
neurotransmitters) from large dense-core vesicles in neurones or 
neuroendocrine cells only upon their appropriate stimulation by 
other first messengers. This can include messengers released by 
nerve impulses in the brain, by food in the gastrointestinal tract, 
or by stimuli such as pain, heat, cold, odourants and light in the 
sensory nervous system.

The fact that regulatory peptides are both regulated in their 
secretion, and act as regulators upon secretion, creates an espe-
cially intimate interaction between their study as pharmacological 
and physiological entities. The pharmacological effects of peptides 
highlight their potential therapeutic actions, although they do not 
always indicate when they are mimicking a physiological action. 
Correspondingly, physiological actions may not always translate 
into	pharmacological	ones;	for	example,	if	the	dynamics	of	release	
of the endogenous peptide requires pulsatility or some other sort 
of	episodic	exposure	to	trigger	a	physiological	and/or	therapeutic	
effect.

In this review, the physiological and pharmacological actions of 
a	 few	 key	 regulatory	 peptides,	 namely	 vasopressin,	 oxytocin,	 glu-
cagon-like peptide-1 (GLP)-1, pituitary adenylate cyclase-activating 
polypeptide	(PACAP)	and	relaxin-3,	are	discussed	with	the	intention	
of illuminating the broad scope of issues involved in translating pep-
tide physiology, structural biology and pharmacology into potential 
therapeutic applications. The review concludes by making the argu-
ment for ‘reverse translation’ as a second key ingredient in achieving 
accelerated progress in both basic and clinical regulatory peptide 
science,	to	the	mutual	benefit	of	these	two	inextricably	linked	areas	
of biomedical research.

2  | VA SOPRESSIN AND OX Y TOCIN

The	 regulatory	 peptides	 vasopressin	 and	 oxytocin	 share	 dual	 roles	
in mediating the physiological regulation of hydromineral balance, 
as well as glucose metabolism and utilisation by the brain. These ho-
meostatic functions are in turn integrated with environmental factors 
and other physiological subsystems, including circadian rhythmicity, 
inflammation, and hormonal and autonomic feedback.1,2 The intimate 
connections	between	(i)	homeostatic	regulation	of	salt	excretion	via	
control	of	kidney	function	by	both	vasopressin	and	oxytocin	and	(ii)	
water	 intake,	via	control	of	consciousness	of	thirst,	are	an	exquisite	
example	of	this	integration	at	the	level	of	the	organism.3 In mammals, 
the neural circuitry for homeostatic regulation involves the control of 
secretion of the posterior pituitary hormones from hypothalamus into 
the general circulation, monitoring of blood tonicity by the circum-
ventricular organs (CVOs) and control of seeking behaviour (thirst) by 
central nervous system (CNS) neurones. These homeostatic mecha-
nisms have their earliest origins in organisms without brains, or even a 
CNS, although they have the capability of achieving homeostasis not 
by altering internal processes, but by moving to more advantageous 
regions	of	the	external	environment.4 Indeed, evolution is an impor-
tant touchstone in considering the potential functions of not only vas-
opressin	and	oxytocin,	but	also	of	regulatory	peptides	in	general	as	a	
metazoan messenger class, especially when considering peptide phys-
iology in commonly used animal models compared to human subjects.

On	August	10th,	2019,	the	Council	of	the	International	
Regulatory Peptide Society (IRPS) met on the campus of the 
Autonomous	National	University	of	Mexico	(UNAM),	Mexico	
City, to inaugurate the IRPS as a non-profit society and to plan 
future meetings of RegPep, the Society’s biennial meeting. 
A	workshop	held	the	previous	day,	and	co-sponsored	by	
UNAM	and	the	IRPS,	gathered	together	Council	members	to	
define the Society’s vision for supporting and nurturing basic 
and translational regulatory peptide science. This vision was 
developed by considering some prototype regulatory peptides 
and approaches to their pharmacology. The workshop, entitled 
“Peptide Regulation in Systems Biology and Its  Translational 
Opportunities” was designed to create a framework within 
which common goals of regulatory peptide physiologists, 
pharmacologists, biochemists, and structural biologists could 
be defined and future strategies developed. During the two 
days of activities, the IRPS also decided to seek an appropriate 
sponsoring journal with which to collaborate in publishing 
the	Society’s	future	proceedings.	Accordingly,	JOURNAL	OF	
NEUROENDOCRINOLOGY was identified, the stated mission 
and scope of which closely matches that of the IRPS. To this 
end, this Perspective is intended as a manifesto for the IRPS 
and	an	announcement	of	its	association	with	JOURNAL	OF	
NEUROENDOCRINOLOGY.
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Vasopressin	 and	 oxytocin	 are	 also	 involved	 in	 the	 prioritisation	
of homeostatic drives by environmental factors. This prioritisation of 
often competing drives is subsumed under the concept of allostatic 
regulation, and includes anticipatory thirst, as well as evaluation of 
salience of aversive environmental cues.5 It is noteworthy that the 
control	of	 vasopressinergic	 and	oxytocinergic	neurones	and	neuro-
secretory cells in these processes occurs in brain regions that may 
be either within or outside the blood-brain barrier (BBB). This should 
be considered in the design of drugs that affect homeostatic and al-
lostatic mechanisms in the periphery, at the BBB and within the BBB. 
Environmental factors, including circadian, metabolic and gonadal sta-
tus, also affect the sensitivity of vasopressin- and other peptide-con-
taining circuits.1,6-8 In some cases, the responsivity of peptidergic 
circuits as a function of inflammation or blood glucose levels can be 
quite marked. These factors should be taken into account when con-
sidering how drug treatments, particularly those directed at peptide 
receptor targets, should be tailored to individual subjects, as well as 
treatment regimens, in clinical trials for new neurotherapeutic drugs.

The	involvement	of	oxytocin	in	specific	behaviours,	in	addition	to	its	
well-known peripheral role(s) in reproductive functions, was highlighted 
in	 the	Workshop.	The	 role	of	oxytocinergic	neurotransmission	 in	 the	
extended	amygdala	and	hypothalamus	has	been	explored	using	optoge-
netic and chemogenetic physiological approaches. These have revealed 
a dynamic role for this peptide in both effecting neurotransmission con-
trolling real-time locomotor activity in response to environmental drives, 
and	in	the	plasticity	of	neuronal	circuits	that	allows	the	linkage	of	past	ex-
perience to the likelihood of future responses to a given primary sensory 
stimulus.9-11 Real-time changes in firing rates of peptidergic neurones 
are	beginning	to	provide	exceedingly	clear	information	about	what	pep-
tides do where, and when. Translating this information into increasingly 
sophisticated operational (including behavioural) tests for drug target 
engagement, and the prediction of behavioural outcomes across a broad 
range of subject environments, will be a goal of future translational re-
search in the regulatory peptide domain. In that regard, recent data have 
indicated	 that	 oxytocin	 administered	 intranasally,	 and	 resulting	 in	 in-
creased cerebrospinal fluid concentrations of the peptide, affects meth-
ylphenidate modulation of consummatory behaviour.12,13 Where does 
oxytocin	actually	act	to	produce	modulation	of	psychomotor	stimulant	
effects?	Determining	the	penetrance	to	brain	of	exogenously	adminis-
tered peptide will provide clues about which brain regions are actually 
required for target engagement for a given therapeutic application of a 
peptide.	This	type	of	reverse	translation-oriented	experimentation	can	
provide another level of peptide specificity, through pharmacodynam-
ics, relevant to peptide-based drug development.

3  | INCRETINS: OBESIT Y AND DIABETES

The worldwide obesity epidemic represents a clear and present health 
threat. Current interventions and treatments for obesity include life-
style and dietary modifications, pharmacotherapy and bariatric sur-
gery. Bariatric surgery (including gastric bypass, sleeve gastrectomy 
and biliopancreatic diversion) is so far the only intervention showing 

a long-term therapeutic effect in obesity. However, the surgical ap-
proach cannot possibly meet obesity-associated clinical/public health 
need in any country, developed or otherwise, across the globe. Thus, 
understanding the mechanisms of weight loss behind bariatric surgery 
will help us in translating this knowledge into less or noninvasive treat-
ments, such as regulatory peptide-based therapies.14 Parenthetically, 
the notion that patients might choose surgery, with all its attendant 
risks and complications, demonstrates hyperphagia, as a cause of obe-
sity, to be a deeply rooted and highly physiological disorder that is re-
sistant to simple voluntary restriction of caloric intake. This highlights 
the emerging understanding of eating as a potentially disordered be-
haviour with behavioural components that may involve the brain cir-
cuitry also implicated in addiction, such as to drugs of abuse.15,16

Along	with	a	 rise	 in	obesity,	 the	prevalence	of	 type	2	diabetes	
(T2D) is rapidly increasing and bariatric surgery has been documented 
to lead to rapid remission of T2D.17 However, curing all diabetics by 
bariatric surgery is impossible: bariatric surgery is life-changing and 
so	not	suitable	for	many	individuals;	 it	 is	expensive;	and	it	remains	
risky. Therefore, analogous to obesity, identification of the under-
lying mechanism behind surgery-induced remission of T2D would 
open up avenues to the development of non-surgical therapies that 
could potentially cure T2D.

At	this	time,	more	and	more	regulatory	peptide-based	drugs	for	
the treatment of T2D are entering the drug pipeline.18	Clinical	ex-
perience with these compounds, primarily incretin peptides, in T2D 
treatment has also revealed effects on weight loss, mainly through 
peptides acting on the GLP-1 receptor. These effects have in turn 
accelerated research aimed at better understanding the role(s) of 
peptides of both hypothalamic and ascending brain stem systems in 
regulating both feeding (fuel intake) and metabolism (fuel utilisation 
and storage). The involvement of ‘incretins’ at both peripheral and 
central loci, and in both homeostatic and allostatic function, is a sce-
nario likely to stimulate drug discovery in the regulatory peptides in 
the coming decades, and in multiple therapeutic areas.

4  | PAC AP: AN EMBARR A SSMENT OF 
REGUL ATORY RICHES

Oxytocin	and	vasopressin	are	two	regulatory	peptides	with	a	dual	role	
in descending hormone/pituitary system function, and as ascending 
neurotransmitters	 in	 behavioural/allostatic	 function.	 PACAP,	 on	 the	
other hand, is even more widely distributed, throughout the auto-
nomic	nervous	system,	the	hypothalamus,	and	the	extrahypothalamic	
brain, providing additional challenges to integrating its physiological 
function and neuroanatomy.19,20 Thus, detailed optogenetic analysis 
of	 PACAP	 function,	 compared	 to	 oxytocin	 and	 vasopressin,	 is	 less	
advanced.	 Nevertheless,	 work	 proceeding	 in	 this	 area	 with	 PACAP	
highlights the comprehensiveness of its actions in stress responses. 
The	actions	of	PACAP	illustrate	a	second	major	theme	for	regulatory	
peptides of the nervous system in particular. Regulatory peptides in 
both the brain and peripheral nervous system are almost invariably co-
stored	with	either	excitatory	or	inhibitory	classical	neurotransmitters,	
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including	glutamate	and	GABA	in	the	CNS21,22 and acetylcholine in the 
periphery.23

A	 conundrum	presented	 by	 some	 regulatory	 peptides.	 Their	 ac-
tions are sufficiently versatile that both antagonists and agonists for 
the	same	 receptor(s)	 can	be	envisioned.	This	 is	 the	case	 for	PACAP,	
which	has	been	implicated	in	migraine	(antagonist	treatment	at	PACAP	
receptor[s] would be required 24,25),	depression	and	anxiety	(antagonist	
treatment would be required 20,26,27), atherosclerosis (antagonist treat-
ment would be required 28), tissue ischaemia (agonist treatment would 
be required29-32) and stroke (agonist treatment would be required33-39). 
A	potential	solution	to	this	conundrum	is	the	exploration	of	the	greater	
specificity	of	action	of	exogenous	peptides	at	sites	of	action	for	which	
either antagonism or agonism is the goal. Ligands biased for alternative 
signalling from a given peptide receptor is a second solution, and one 
that is being vigorously pursued in the development of non-addictive 
opiate agonists.40 Here, it is critical to remember that any biased ago-
nist is by definition an antagonist for the corresponding non-stimulated 
pathway,41	and	thus	may	have	multiple	and	complex	effects.

5  | REL A XIN: A PROTOT YPE ‘BR AIN STEM 
A SCENDING’ REGUL ATORY PEPTIDE

The	 relaxin-3/relaxin-3	 receptor	 (RXFP3)	 system	represents	another	
example	of	a	modulatory	peptide/receptor	system	that	is	versatile	in	
function,42,43 although with a far more discrete, restricted anatomical 
distribution of peptide-positive neurones in the brain than many other 
peptides.42	Indeed,	a	broad	network	of	relaxin-3-containing	neuronal	
projections arise from several small groups of neurones in the midbrain 
and brainstem, with the largest and best-characterised located within 
the nucleus incertus and others within the pontine raphe nucleus and 
the	ventrolateral	PAG.44	Nucleus	 incertus	relaxin-3	neurones	are	re-
sponsive to peripheral and sensory and stress-related inputs,45 and 
project	widely	to	RXFP3-rich	areas	throughout	the	brain,	where	they	
influence arousal,46 hypothalamic, limbic and sensory activity,47,48 as 
well as spatial memory and navigation via interactions with the sep-
tohippocampal system.42,49,50	 The	 pharmacology	 of	 RXFP351 has 
developed progressively over the last decade, driven by the produc-
tion	of	RXFP3-selective	chimeric,	truncated,	stapled	and	single-chain	
peptides,52,53 as well as the recent report of a potent, small organic 
molecule agonist.54 These important tools, which include a viral-based 
RXFP3	agonist	delivery	 system,55 along with a range of appropriate 
transgenic mouse lines,56,57 will continue to assist proof-of-concept 
studies	 aiming	 to	 evaluate	 the	 involvement	 of	 RXFP3	 signalling	 in	
various aspects of physiology and behaviour, and in clinical CNS disor-
ders.58 In turn, these studies should foster further investigations of the 
ability	of	RXFP3-related	drugs	to	effectively	treat	psychiatric	illnesses	
for	which	the	RXFP3	signalling	system	emerges	as	a	viable	target.59

Thus,	 some	of	 the	 lessons	of	GLP-1	and	 relaxin-3-related	drug	
development are shared ones. In both systems, the potential for 
biased ligands of greater specificity is currently unclear as a result 
of the paucity of knowledge about the second messenger systems 
used	by	GLP-1	and	relaxin	receptors	in	different	regions	of	the	brain,	

although	biased	signalling	has	recently	been	investigated	for	RXFP3	
and	for	relaxin	at	its	cognate	receptor	RXFP1,	in	cell-based	assays.	
Therefore this is an area of future research where investigators in 
both basic and applied realms can profitably contribute.

6  | PHYSIOLOGY MEETS DRUG DELIVERY: 
BBB, C VOS AND COMMON PEPTIDES IN 
THE PERIPHERY AND BR AIN

Access	 to	 the	CNS	 is	 essential	 for	 the	 regulatory	 function	of	 sev-
eral circulating peptides. Indeed, some circulating regulatory pep-
tides were demonstrated to directly cross the BBB, such as leptin, 
angiotensin	 (Ang)	 II,	 oxytocin,	 PACAP	 and	 ghrelin,	 via	 changes	 in	
permeability, specific transporters at the BBB, or by mechanisms as 
yet unknown.12,60-62 In addition, other regulatory peptides act indi-
rectly, rather than via penetration to CNS parenchymal receptors, 
to modulate neuronal function. Such indirect pathways involve the 
CVOs and/or vagal afferents. The CVOs are brain structures that 
lack	 a	BBB	 and	 express	 a	 number	 of	 receptors	 for	 circulating	 sig-
nals, being able to sense the blood-borne levels of several regulatory 
peptides.63,64	Similarly,	vagal	afferents	also	express	a	variety	of	re-
ceptors for circulating regulatory peptides, actively transporting re-
ceptor proteins to nerve terminals, and collecting information about 
local and circulating peptide levels.65,66 Information about peripheral 
regulatory peptides is integrated with other CNS inputs at the CVOs 
and/or the nucleus tractus solitarius of the brain stem (from vagal af-
ferents). These brain nuclei are responsible for onward transmission 
to those areas of the brain controlling vegetative function and be-
haviour, to deliver adequate neuroendocrine responses to the fluc-
tuation of the regulatory peptides in the periphery. Besides directly 
crossing the BBB, and indirect action through the CVOs and vagal 
afferents, some peripheral regulatory peptides are also synthesised 
and synaptically released in the CNS, including gastrin, cholecysto-
kinin, glucose-dependent insulinotropic polypeptide and GLP-1.67,68

Naturally, with multiple modes of regulation available to various 
peptides, whether or not CNS synthesis and synaptic release are 
required for the CNS action of a peptide in a given circumstance 
can	be	uncertain.	Whether	and	when	ghrelin	and	Ang	II	are	actually	
released	within	the	CNS,	for	example,	has	been	a	matter	of	contro-
versy.69,70 The use of ‘sniffer cell’ and other in vivo detection meth-
ods for assessment of peptide secretion in CNS is helping to answer 
these questions.71	By	using	the	sniffer	cell	approach,	for	example,	
Farmer et al72	recently	demonstrated	the	synaptic	release	of	Ang	II	
at the median preoptic nucleus by either electrical or optogenetic 
stimulation of the subfornical organ.

Peptides may act peripherally to convey information to the brain 
via vagal afferents; at CVOs; or directly within the brain as neu-
rotransmitters. Therefore, it can be difficult to know in any given case 
(i) how the brain integrates these parallel information streams; (ii) 
whether therapeutic agents are acting centrally or peripherally; and 
(iii) whether, therefore, we can build adequate physiological models 
for peptide action on which to base therapeutic interventions. The 
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case of GLP-I is instructive here: this peptide is secreted peripher-
ally, it is present at synapses onto neurones of the nucleus tractus 
solitarius	 of	 the	 brain	 stem	 that	 express	 both	 the	GLP-1	 receptor	
and GLP-1 itself, and this ‘upwardly mobile’ projection system acts 
in ventral tegmentum and other di- and telencephalic brain regions 
to mediate GLP-1-dependent food-specific appetitive behaviour. For 
these reasons, it was initially difficult, as for ghrelin, to determine 
whether the actions of GLP-1 are primarily peripheral, primarily 
central or necessarily both for a given physiological or behavioural 
response. It is noteworthy that this ‘peptides-in-series’ arrangement 
also	exists	for	the	presence	of	PACAP	in	both	primary	sensory	inputs	
to CNS, as well as within cells upon which the latter first synapse 
in	the	brain	(L.	Zhang,	C.R.	Gerfen,	V.S.	Hernández,	S.Z.	Jiang,	R.A.	
Barrio and L.E. Eiden, unpublished data).

7  | REGUL ATORY PEPTIDES, 
INFLAMMATION AND IMMUNE REGULATION, 
AND NEUROENDOCRINOLOGY

Evolution, by definition, involves the use of all the gene-encoded 
molecular	and	cellular	tools	available	to	existing	organisms	to	max-
imise fitness.73 Thus, it is not surprising that the peptides we refer 
to as ‘neuroendocrine regulatory peptides’ have additional roles 
outside of the realm of what we have chosen to call ‘neuroendo-
crinology’.	Examples	include	the	roles	of	vasopressin	and	oxytocin	
in the thymus during self-tolerance,74,75 roles of chromogranin pep-
tides in autoimmune defense and disease,76	and	the	role	of	PACAP	
in vascular and neural inflammation via elaboration by antigen-pre-
senting cells including microglia and monocyte/macrophages.77-79 
In the future, we are likely to find, that these functions, appearing 
now to stand alone from neuroendocrinology as generally con-
strued, are also intimately involved in neuroendocrine regulation. 
Systems physiology dictates that integration, rather than insula-
tion, is the default relationship among the systems of the body, as 
amply	illustrated	by	the	opening	example	of	circadian	regulation	of	
neuroendocrine susceptibility to cytokine regulation.1,8 Perceiving 
regulatory peptides as first messengers that allow multicellular 
organisms to coordinate their activities as a single entity is an in-
clusive, yet ‘neuroendocrine-centric’, viewpoint. It is likely to be a 
productive one with respect to moving forward our basic under-
standing of mammalian physiology as an evolved enterprise, and 
quickly grasping how to employ new insights into neuroendocrine 
function into therapeutic applications.

8  | THE ROLE OF TR ANSL ATION AND 
RE VERSE TR ANSL ATION/RE VERSIBLE 
TR ANSL ATION IN REGUL ATORY PEPTIDE 
PHYSIOLOGY AND CLINIC AL APPLIC ATION

Environmental drivers of human behaviour range from the daily ap-
pearance of the sun to the availability of food and water, interaction 

with other humans and domesticated mammals, and the vagaries of 
wind, rain and temperature that determine where human activities 
take place. The environment is reflected internally in the homeo-
static mechanisms that promote the onset and cessation of eating, 
drinking,	 sexual	 behaviour	 and	 sleep,	 and	 are	 signalled	 by	 hunger,	
thirst, libido and fatigue. It is increasingly obvious to physiologists 
that anticipatory behaviours, referred to as allostatic regulation, 
are linked to homeostatic drives by regulatory peptides acting in 
the realms of reward and aversion, triggering behaviours of seek-
ing and avoidance. The Workshop reflected, and the International 
Regulatory Peptide Society (IRPS) aims to nurture, a growing inter-
est worldwide in understanding the properties of peptide ligand-
receptor dyads in integrating virtually every aspect of mammalian 
physiology. Metabolic, hydromineral, sensory and social cues are 
linked to the prioritisation of consummatory behaviours that we rec-
ognise best when they are disrupted in disorders such as obesity, 
anxiety,	 post-traumatic	 stress	 disorder,	 alcoholism,	 drug	 addiction	
and depression, and even in some everyday events such as sickness 
behaviour and insomnia. The secretion of peptides from cells in the 
gut, adipose tissue, peripheral nervous system and brain, to sets of 
receptors on recipient cells, after travelling short (as neurotransmit-
ters) or long (as hormones) distances, completes a plethora of cir-
cuits required for normal human behaviour. We are beginning to map 
and understand each of them, as well as the unique properties of 
each that offer opportunities for translation to clinical practice in a 
wide range of human disorders.

How	do	we	meet	 the	challenge	of	 the	ever-expanding	 roles	of	
peptides in physiology, and the need to create ever more selective 
compounds	 for	 specific	 clinical	 applications?	 A	 few	 thoughts	 are	
worth considering. One is that, as already alluded to, peptides and 
their receptors have co-evolved, although with remarkable conser-
vation of function.80,81 This is seen quite vividly in the utilisation of 
peptide signalling for both homeostatic and allostatic function in the 
regulation of water intake and vasopressinergic signalling.5,82 Thus, 
it is incumbent upon scientists who suggest potential clinical appli-
cations of a given peptidergic system for a given disease to spec-
ify, empirically, that the ligand-receptor dyad of interest is indeed 
embedded in the human central and/or peripheral nervous system 
within the same circuits identified in animal models. Often, this is not 
the case,83	 and	human	 “exceptionalism”	can	be	used	 to	determine	
the best strategies for targeting a particular clinical problem in which 
multiple	 peptides	 may	 contribute.	 A	 second	 consideration	 is	 that	
peptide actions are almost invariably combinatorial, and this is most 
true when the function of interest is most primordial. Hunger, thirst 
and	sex	are	existential	drives	for	all	species.	The	genomic	niche	con-
stituted by the regulatory peptides and their receptors has clearly 
contributed substantially throughout the history of genetic selection 
(evolution), and in highly species-specific ways, to both regulating 
these drives homeostatically and prioritising the behaviours driven 
by each. The recent development of chimeric peptides that engage 
multiple peptidergic receptors for controlling glucose utilisation/in-
sulin	secretion	provides	an	example	of	how	engaging	multiple	players	
in the regulatory peptide orchestra might yield clinically impactful 
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results.15	Adjudication	of	issues	raised	by	clinical	translation,	in	an-
imal models, is a currently somewhat neglected area in regulatory 
peptide	research.	As	an	example,	the	genetic	link	between	variation	
in	the	oestrogen-responsive	element	of	the	PACAP	PAC1	receptor	
and post-traumatic stress disorder progression in female human sub-
jects84	has	yet	to	find	an	analogue	in	a	sex-specific	stress	response	
in rodents. This may be the result of a species-specific action of 
PACAP	in	humans	compared	to	rats	or	mice,	or	a	failure	of	reverse	
translation to prioritise the identification of a corresponding rodent 
sex-specific	function	for	this	neuropeptide	in	the	basic	physiology	of	
stress and fear learning. However, it is likely that the issue of reverse 
translation will arise again and again, with important implications 
for both basic and translational research, in the regulatory peptide 
arena. The notion that translation is ever a one-way street from basic 
science to the clinic, as currently conceptualised, rather than an in-
formed dialogue, is one that regulatory peptide practitioners should 
look forward to jettisoning.
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